ELEC50001 - Circuits and Systems

2021-2022

Answer ALL questions.
There are THREE questions on the paper.
Question ONE counts for 50% of the marks, other questions 25% each

Time allowed: 2 hours

Information for Candidates:

The following notation is used in this paper:

1. Unless explicitly indicated otherwise, digital circuits are drawn with their inputs on the left and their outputs on the right.
2. Within a circuit, signals with the same name are connected together even if no connection is shown explicitly.
3. The notation $\mathrm{X}[2: 0]$ denotes the three-bit number $\mathrm{X} 2, \mathrm{X} 1$ and X 0 . The least significant bit of a binary number is always designated bit 0 .
4. (a) Part of the datasheet for AD823, a dual operational amplifier integrated circuit, is provided as a separate document for your convenience.

Based on the information available, answer the following questions with appropriate justifications.
(i) Figure 1.1(a) shows half of the AD823 connected as an amplifier. Sketch the output signal Vout if the input signal $\mathrm{V}_{\text {IN }}$ is a sinewave at 3.2 MHz with an amplitude of 0.1 V and a DC offset of 0.2 V . State any assumptions made.
(ii) Sketch the output signal $V_{\text {OUT }}$ if the input signal $\mathrm{V}_{\text {IN }}$ is a symmetrical digital clock signal at a frequency of 1 MHz with low and high logic levels at 0 V and 0.3 V .
(iii) Figure 1.1(b) shows the AD823 connected as audio amplifier for input signal in the frequency range of 20 Hz to 20 kHz driving a 32Ω headphone.
I. What is the gain of the amplifier at the specified frequency range?
II. What is the DC operating voltage at nodes A, B and C ?
III. What value would you choose for the value of R in Figure 1.1(b) and why?
IV. What is a suitable value of the output capacitor Cout and why?

Figure 1.1(a)

Figure 1.1(b)
(b) A 16-bit microprocessor system has 32 k byte of RAM, 8 k byte of ROM and two I/O devices each occupy 4 bytes of the memory address space. The microprocessor has a 16 -bit address bus A[15:0]. The starting addresses of the RAM, ROM and I/O devices are shown in Figure 1.2.
(i) What is the address range of each of the devices?
(ii) Design in the form of Boolean equations the chip select signals RAM_CS, ROM_CS, IO1_CS and IO2_CS. You may assume that the chip select signals are low-active in all cases.
(iii) Implement in Verilog this address decoder module.

Device	Starting Address (in Hex)
RAM	0000
ROM	A000
I/O 1	FEOO
I/O 2	FFOO

Figure 1.2
(c) Figure 1.3 shows a circuit with two D flip-flops FF1 and FF2 with setup and hold times of 2 ns and 1 ns respectively, and a clock-to-Q output delay of 1 ns . The clock signal CLK has a 1:1 mark-space ratio. The signal path has two combinational circuits, LUT_1 and LUT_2, each having a propagation delay between 1 ns and 5 ns . The clock path is driven by non-inverting clock buffer, which has a propagation delay between 2 ns and 10 ns .
(i) Derive the inequalities for the setup time constraints for this circuit.
(ii) Hence derive the maximum frequency of the signal CLK for reliable operation of this circuit.
(iii) How would you modify the circuit to increase the maximum operating clock frequency? What is the new maximum frequency?

Figure 1.3
(d) You are required to convert a 10 -bit digital number to an analogue voltage over the voltage range of 0 to 3.3 V with a Digital-to-Analogue Converter (DAC).
(i) What is the resolution of the analogue output?
(ii) Figure 1.4 shows the circuit of a 4-bit DAC using R-2R ladder architecture, four electronic switches and a current summing operational amplifier. Derive the value I_{o} flowing through the bottom 2 R resistor (in terms of R). Hence or otherwise, derive the value of I_{in}, the input current from the voltage reference Vref. What is the output voltage $V_{\text {out }}$ of the DAC with the switch setting as shown in Figure 1.4?

Figure 1.4
(e) A circuit with a 4-bit unsigned input X [3:0] and a 4-bit unsigned output Y [3:0] is required to perform a decoding function as described by the following pseudo-code:

```
if X < 5
    Y = X
else if X < 12
    Y = X + 3
else
    Y = X - 2
```

(i) Design this decoder circuit in Verilog HDL with the interface declarations shown in Figure 1.5 using the CASE statement.
(ii) If the decoder is implemented using Intel's MAX-10 FPGA, estimate the number of Logic Elements (LEs) required.

Figure 1.5
2. (a) Figure 2.1 shows an integrator circuit implemented using a dual supply operational amplifier. Derive from first principle the relationship between $V_{\text {OUT }}$ and $V_{\text {IN }}$, and hence shows that the transfer function of this circuit is:

$$
\begin{equation*}
K(s)=\frac{V_{\text {out }}(s)}{V_{\text {in }}(s)}=-\frac{1}{R C} \times \frac{1}{s} \tag{5}
\end{equation*}
$$

(b) Figure 2.2 shows a summing integrator with two input voltages X and Y . Shows that the relationship between the output V_{1} and the inputs X and Y is given by the following:

$$
\begin{equation*}
V_{1}(s)=-\frac{1}{\frac{1}{2}+10 R C s}(X(s)+Y(s)) \tag{10}
\end{equation*}
$$

(c) Figure 2.3 shows a filter circuit combining the circuits from (a) and (b) above and feedback. Show that the transfer function of this circuit is that of a second-order low pass filter of the form:

$$
\begin{equation*}
H(s)=\frac{V_{\text {out }}(s)}{V_{\text {in }}(s)}=-\frac{1000}{s^{2}+5 s+1000} \tag{10}
\end{equation*}
$$

Figure 2.1

Figure 2.3
3. Figure 3.1 shows the top-level schematic of the serial peripheral interface SPI used to interface between the MAX10 FPGA board and a digital to analogue converter.
a) Specify in Verilog HDL the divide-by-50 clock circuit that produces the 1 MHz internal symmetrical clock signal clk_1MHz (i.e. 1:1 mark-space ratio) from the 50 MHz system clock.
b) Figure 3.2 shows the state diagram of the "load detector" FSM circuit. Specify in Verilog HDL the code segment that implements this FSM.
c) Figure 3.3 shows the code segment of the 16 -bit data shift register circuit in Verilog HDL. Draw the digital circuit that is expected to be synthesized, using only D flipflops, multiplexers and basic logic gates.

Figure 3.1

Figure 3.2

```
input [9:0] data_in; // input data to DAC
wire [9:0] data_in;
reg dac_ç, dac_ld;
wire dac_sck, dac_sdi;
parameter BUF=1'b1; // 0:no buffer, 1:Vref buffered
parameter GA N=1'b0; // 0:gain = 2x, 1:gain = 1x
parameter SHDN_N=1'b1; // 0:power down, 1:dac active
wire [3:0] cmd = {1'b0,BUF,GA_N,SHDN_N}; // wire to VDD or GND
// shift register for output data
reg [15:0] shift_reg;
initial begin
    shift_reg = 16'b0;
    end
always @(posedge clk_1MHz)
    if((dac_start==1'b1)&&(dac_cs==1'b1)) // parallel load data to shift reg
    shift_reg <= {cmd,data_in,2'b00};
    else // .. else start shifting
    shift_reg <= {shift_reg[14:0],1'b0};
// Assign outputs to drive SPI interface to DAC
    assign dac_sck = !clk_1MHz&!dac_cs;
    assign dac sdi = shift reg[15];
```

Figure 3.3

Data Sheet

FEATURES

Single-supply operation
Output swings rail-to-rail
Input voltage range extends below ground
Single-supply capability from $\mathbf{3 V}$ to 36 V
High load drive
Capacitive load drive of $\mathbf{5 0 0} \mathbf{~ p F}, \mathbf{G}=+\mathbf{1}$
Output current of $15 \mathrm{~mA}, 0.5 \mathrm{~V}$ from supplies
Excellent ac performance on 2.6 mA /amplifier
-3 dB bandwidth of $16 \mathrm{MHz}, \mathrm{G}=+1$
350 ns settling time to $\mathbf{0 . 0 1 \%}$ (2 V step)
Slew rate of $22 \mathrm{~V} / \mu \mathrm{s}$
Good dc performance
$800 \mu \mathrm{~V}$ maximum input offset voltage
$2 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ offset voltage drift
$\mathbf{2 5} \mathrm{pA}$ maximum input bias current
Low distortion: - $\mathbf{1 0 8} \mathbf{d B c}$ worst harmonic @ $\mathbf{2 0} \mathbf{~ k H z}$
Low noise: $16 \mathrm{nV} / \sqrt{\mathrm{Hz}}$ @ 10 kHz
No phase inversion with inputs to the supply rails

APPLICATIONS

Battery-powered precision instrumentation

Photodiode preamps

Active filters
12-bit to 16 -bit data acquisition systems
Medical instrumentation

GENERAL DESCRIPTION

The AD823 is a dual precision, 16 MHz , JFET input op amp that can operate from a single supply of 3.0 V to 36 V or from dual supplies of $\pm 1.5 \mathrm{~V}$ to $\pm 18 \mathrm{~V}$. It has true single-supply capability with an input voltage range extending below ground in single-supply mode. Output voltage swing extends to within 50 mV of each rail for Iour $\leq 100 \mu \mathrm{~A}$, providing outstanding output dynamic range.
An offset voltage of $800 \mu \mathrm{~V}$ maximum, an offset voltage drift of $2 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$, input bias currents below 25 pA , and low input voltage noise provide dc precision with source impedances up to a Gigaohm. It provides $16 \mathrm{MHz},-3 \mathrm{~dB}$ bandwidth, -108 dB THD $@ 20 \mathrm{kHz}$, and a $22 \mathrm{~V} / \mu \mathrm{s}$ slew rate with a low supply current of 2.6 mA per amplifier. The AD823 drives up to 500 pF of direct capacitive load as a follower and provides an output current of $15 \mathrm{~mA}, 0.5 \mathrm{~V}$ from the supply rails. This allows the amplifier to handle a wide range of load conditions.

CONNECTION DIAGRAM

Figure 1.8-Lead PDIP and SOIC

Figure 2. Output Swing, $+V_{s}=+3 v, G=+1$

Figure 3. Small Signal Bandwidth, $G=+1$
This combination of ac and de performance, plus the outstanding load drive capability, results in an exceptionally versatile amplifier for applications such as A/D drivers, high speed active filters, and other low voltage, high dynamic range systems.
The AD823 is available over the industrial temperature range of $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ and is offered in both 8-lead PDIP and 8-lead SOIC packages.

Rev. E
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other license is granted by implication or otherwise under amy patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

AD823

At $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C},+\mathrm{V}_{\mathrm{S}}=+3.3 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$ to 1.65 V , unless otherwise noted.
Table 2.

Parameter	Conditions	Min	Typ	Max	Unit
DYNAMIC PERFORMANCE ```-3 dB Bandwidth,}\mp@subsup{V}{o}{}\leq0.2 V p- Full Power Response Slew Rate Settling Time to 0.1% to 0.01%```	$\begin{aligned} & G=+1 \\ & V_{0}=2 \mathrm{~V} \text { p-p } \\ & G=-1, V_{0}=2 \mathrm{~V} \text { Step } \\ & G=-1, V_{0}=2 \mathrm{~V} \text { Step } \\ & G=-1, \mathrm{~V}_{0}=2 \mathrm{~V} \text { Step } \end{aligned}$	12 13	$\begin{aligned} & 15 \\ & 3.2 \\ & 20 \\ & \\ & 250 \\ & 300 \\ & \hline \end{aligned}$		MHz MHz V/ $\mu \mathrm{s}$ ns ns
```NOISE/DISTORTION PERFORMANCE Input Voltage Noise Input Current Noise Harmonic Distortion Crosstalk \(\mathrm{f}=1 \mathrm{kHz}\) \(\mathrm{f}=1 \mathrm{MHz}\)```	$\begin{aligned} & \mathrm{f}=10 \mathrm{kHz} \\ & \mathrm{f}=1 \mathrm{kHz} \\ & \mathrm{R}_{\mathrm{L}}=100 \Omega, \mathrm{~V}_{\mathrm{O}}=2 \mathrm{Vp}-\mathrm{p}, \mathrm{f}=20 \mathrm{kHz} \\ & \mathrm{R}_{\mathrm{L}}=5 \mathrm{k} \Omega \\ & \mathrm{R}_{\mathrm{L}}=5 \mathrm{k} \Omega \end{aligned}$		$\begin{aligned} & 16 \\ & 1 \\ & -93 \\ & -105 \\ & -63 \\ & \hline \end{aligned}$		$\mathrm{nV} / \sqrt{\mathrm{Hz}}$   $\mathrm{fA} / \sqrt{ } \mathrm{Hz}$   dBc   dB   dB
```DC PERFORMANCE Initial Offset Maximum Offset Over temperature Offset Drift Input Bias Current at Tmax Input Offset Current at Tmax Open-Loop Gain Tmin to Tmax```	$\begin{aligned} & \mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V} \text { to } 2 \mathrm{~V} \\ & \mathrm{~V} M=0 \mathrm{~V} \text { to } 2 \mathrm{~V} \end{aligned}$ $\mathrm{V}_{\mathrm{O}}=0.2 \mathrm{~V} \text { to } 2 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$	$\begin{aligned} & 15 \\ & 12 \end{aligned}$	$\begin{aligned} & 0.2 \\ & 0.5 \\ & 2 \\ & 3 \\ & 0.5 \\ & 2 \\ & 0.5 \\ & 30 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 2.5 \\ & \\ & 25 \\ & 5 \\ & 20 \end{aligned}$	mV   mV   $\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$   pA   nA   pA   nA   $\mathrm{V} / \mathrm{mV}$   $\mathrm{V} / \mathrm{mV}$
INPUT CHARACTERISTICS Input Common-Mode Voltage Range Input Resistance Input Capacitance Common-Mode Rejection Ratio	$\mathrm{V}_{\mathrm{Cm}}=0 \mathrm{~V}$ to 1 V	$-0.2 \text { to }+1$ 54	$\begin{aligned} & -0.2 \text { to }+1.8 \\ & 10^{13} \\ & 1.8 \\ & 70 \\ & \hline \end{aligned}$		$\begin{aligned} & \mathrm{V} \\ & \Omega \\ & \mathrm{pF} \\ & \mathrm{~dB} \end{aligned}$
OUTPUT CHARACTERISTICS Output Voltage Swing $\begin{aligned} & \mathrm{L}= \pm 100 \mu \mathrm{~A} \\ & \mathrm{~L}= \pm 2 \mathrm{~mA} \\ & \mathrm{~L}= \pm 10 \mathrm{~mA} \end{aligned}$ Output Current Short-Circuit Current Capacitive Load Drive	$\mathrm{V}_{\text {out }}=0.5 \mathrm{~V}$ to 2.5 V Sourcing to 1.5 V Sinking to 1.5 V $G=+1$		$\begin{aligned} & 0.025 \text { to } 3.275 \\ & 0.08 \text { to } 3.22 \\ & 0.25 \text { to } 3.05 \\ & 15 \\ & 40 \\ & 30 \\ & 500 \end{aligned}$		V V V mA mA mA pF
POWER SUPPLY Operating Range Quiescent Current Power Supply Rejection Ratio	$\mathrm{T}_{\text {MiN }}$ to $\mathrm{T}_{\text {max }}$, total $\mathrm{V}_{\mathrm{s}}=3.3 \mathrm{~V}$ to $15 \mathrm{~V}, \mathrm{~T}_{\text {min }}$ to $\mathrm{T}_{\text {max }}$	70	$\begin{aligned} & 5.0 \\ & 80 \end{aligned}$		$\begin{aligned} & \mathrm{V} \\ & \mathrm{~mA} \\ & \mathrm{~dB} \end{aligned}$

Figure 11. Open-Loop Gain vs. Load Resistance

Figure 12. Open-Loop Gain vs. Output Voltage, $V_{s}= \pm 2.5 \mathrm{~V}$

Figure 13. Total Harmonic Distortion vs. Frequency

Figure 14. Open-Loop Gain vs. Temperature

Figure 15. Open-Loop Gain and Phase Margin vs. Frequency

Figure 16. Input Voltage Noise vs. Frequency

